Tutorial: Creating Multiplayer Games

Copyright 2003-2004, Mark Overmars

Last changed: September 1, 2004

Uses: version 6.0, advanced mode, registered version
Level: Advanced

Playing games against the computer is fun. But playing games against other human players can be
even more fun. It is aso relatively easy to make such games because you don't have to implement
complicated computer opponent Al. Y ou can of course sit with two players behind the same
monitor and use different keys or other input devices, but it is alot more interesting when each
player can sit behind his own computer. Or even better, one player sits on the other side of the
ocean. For this Game Maker has multiplayer support. This tutorial explains you how to use it. Be
warned though. Creating effective multiplayer gamesis not easy. It requires that you are an
experienced user of Game Maker. Y ou will need to understand the use of some code. So don't let
this be the first game you develop. Also, to use this functionality you need to have the registered
version of Game Maker.

In this tutorial we will create a simple two-player pong game and a little chat program. The
emphasis is not on nice graphics or fancy game play but only on the multiplayer aspects. You can
useit as abasis for amore fancy game. We will treat the following aspects:

Setting up a connection to a different computer
Creating or joining a game session
Keeping the games synchronized

The last part is the most difficult aspect of every multiplayer game. The problem is how to make
sure that both players have exactly the same view on the game. For example, in the pong game,
both players should see the ball at exactly the same place. Game Maker will provide the tools to do
this but you will have to design the communication yourself for each game you make.

Setting up a connection

The standard way in which a multiplayer game works is as follows. Each player runs a copy of the
game. They do though run in different modes. One player runs his or her game in a server mode.
The othersrun the game in a client mode. The server should start the game first and creates the
game session. The others can then join this session to join the game. The players must decide on the
mechanism used for communicating between the computers. On alocal areanetwork, the easiest is
to use an IPX connection (see below for more details). If al players are connected to the Internet
TCP/IP is normally used. In this protocol the clients must know the |P address of the server. So the
player running the game in server mode must give his IP address to the other players (for example
by sending them an email). Y ou can find your |P address by using the program called winipcfg.exe
in your windows directory. Y ou can aso use the Game Maker function npl ay_i paddr ess()
for this. A more old-fashioned way of connecting is using a modem connection (in which case the
client must know the phone number of the server and provide this) or using a seria line.

Please redize that communication is getting more difficult now that people use firewalls and
routers. These tend to block messages and convert | P addresses. If you have problems setting up a
connection this might be the reason. Best first test with some commercial game whether the
connection can be made. See ??? for some information on how to circumvent this problem. Also
realize that the internal |P address might not be the same as the externa one due to e.g. routers.

So for two computer to communicate they will need some connection protocol. Like most games,
Game Maker offers four different types of connections: IPX, TCP/IP, Modem, and Serial. The IPX

connection (to be more precise, it is a protocol) works almost completely transparent. It can be used
to play games with other people on the same loca area network. The protocol needsto be installed
on your computer to be used. (If it does not work, consult the documentation of Windows. Or go to
the Network item in the control panel of Windows and add the IPX protocol.) TCP/IP is the internet
protocol. It can be used to play with other players anywhere on the internet, assuming you know
their 1P address. On alocal network you can use it without providing addresses. A modem
connection is made through the modem. Y ou have to provide some modem setting (an initialization
string and a phone number) to use it. Finally, when using a seria line (a direct connection between
the computers) you need to provide a number of port settings. There are four GML functions that
can be used for initializing these connections:

npl ay_i ni t _i px() initializes an IPX connection.

npl ay_i nit _t cpi p(addr) initializes a TCP/IP connection. addr is a string containing the
web address or IP address, e.g. 'www.gameplay.com' or '123.123.123.12', possibly followed
by a port number (e.g. :12"). Only when joining a session (see below) you need to provide
an address. The person that creates the session does not need to provide an address (because
the address of his computer is the one that matters.) On alocal area network no addresses
are necessary, but you still need to make the call.

npl ay_i nit _nmodenti ni t str, phonenr) initiadlizes a modem connection. i ni t str isthe
initialization string for the modem (can be empty). phonenr isastring that contains the
phone number to ring (e.g. '0201234567"). Only when joining a session (see below) you
need to provide a phone number.

npl ay_init_serial (portno, baudrate, stopbits, parity,flow)initializesaserial
connection. por t no is the port number (1-4). baudr at e isthe baudrate to be used (100-
256K). st opbi t s indicates the number of sopbits (0 =1 bit, 1 = 1.5 bit, 2 = 2 bits). parity
indicates the parity (O=none, 1=odd, 2=even, 3=mark). And f | ow indicates the type of flow
control (O=none, 1=xon/xoff, 2=rts, 3=dtr, 4=rts and dtr). Returns whether successful. A
typica cal is mplay_init_serial(1,57600,0,0,4). Give 0 as afirst argument to open a dialog
for the user to change the settings.

Y our game should call one of these functions exactly once. All functions report whether they were
successful. They are not successful if the particdar protocol is not installed or supported by your
machine.

So the first room in our game should show the four possibilities and let the player pick one. (Or
only alow for those protocols that you want. The last two might be too slow for your game.) We
cal the initialization function in the mouse event and, if successful, go to the next room. Otherwise
we give an error message. So in the mouse event of the IPX button we place the following piece of
code:

{
if (nplay_init_ipx())
room got o_next ()
el se
show _nessage(' Failed to initialize |IPX connection.")
}

When the game ends, or when the game no longer wants to use the multiplayer facility, you should
use the following routine to end it:

npl ay_end() ends the current connection. Returns whether successful.

Y ou should aso call this routine before you want to make a new, different connection.

Game sessions

When you connect to a network, there can be multiple games happening on the same network. We
call these sessions. These different sessions can correspond to different games or to the same game.
A game must uniquely identify itself on the network. Fortunately, Game Maker does this for you.
The only thing you have to know is that when you change the game id in the globa game settings
this identification changes. In this way you can avoid that people with old versions of your game
will play against people with new versions.

If you want to start a new multiplayer game you need to create a new session. For this you can use
the following routine:

npl ay_sessi on_cr eat e(sesnane, pl aynunb, pl ayer nane) creates a new session on the
current connection. sesnarme is a string indicating the name of the session. pl aynunb isa
number that indicates the maximal number of players allowed in this game (use O for an
arbitrary number). pl aynane is the name of you as player. Returns whether successful.

In many cases the player name is not used and can be an empty string. Also, the session name is
only important if you want to give people the option to choose the sessionthey want to join.

So one instance of the game must create the session. The other instance(s) of the game should join
this session. Thisis dightly more complicated. Y ou first need to look what sessions are available
and then choose the one to join. There are three routines important for this:

npl ay_sessi on_fi nd() searches for al sessions that still accept players and returns the
number of sessions found.

npl ay_sessi on_nane(nunb) returns the name of session number nunb (O is the firgt
session). This routine can only be called after calling the previous routine.

npl ay_sessi on_j oi n(nunb, pl ayer name) makes you join session number nunb (0 isthe
first session). pl ayer nane is the name of you as a player. Returns whether successful.

So what you standard do is call npl ay_sessi on_fi nd() to find al existing sessions. Then you
either repeatedly usenpl ay_sessi on_nane() to show them to the player and let him make a choice,
or you immediately join the first session. (Note that finding the session takes a bit of time. So don't
call thisroutine in each step.)

A player can stop a session using the following routine:
npl ay_sessi on_end() ends the session for this player.
It is useful to first notify the other player(s) of this but thisis not strictly necessary.

So in our game, the second room gives the user two choices: either to create a new session, or to
join an existing session. For the first choice we perform the following code in the mouse event:

{

if (nplay_session_create('',2,""))

gl obal . master =
room got o_next () ;
}
el se
show _nessage(' Failed to create a session.')

Note that we set a global variable master to true. The reason is that in the game we want to make a
distinction between the main player (called the master) and the second player (called the dave). The
master will be responsible for most of the game play while the dave ssmply follows him.

The second choice is to join an existing game. Here the code looks as follows.

{
if (nplay_session_find() > 0)

if (nmplay_session_join(0,""))

gl obal . master =
room got o_next ();

}

el se
show_message(' Failed to join a session."')
}

el se
show_nessage(' No session available to join.")
}

So in this game we simply join the first session that is available. Because we indicated that the
maximal number of playersis 2, no other player can join the session anymore.

Dealing with players
Once the master created a session, we have to wait for another player to join. There are three
routinesthat deal with players.

npl ay_pl ayer _fi nd()searchesfor all playersin the current session and returns the number
of players found.

npl ay_pl ayer _name(nunb) returns the name of player number nunb (O is the first player,
which is always yourself). This routine canonly be called after calling the previous routine.
npl ay_pl ayer _i d(nunb) returns the unique id of player number numb (0 isthe first player,
which is aways yourself). This routine can only be called after calling the first routine. This
id is used in sending and receiving messages to and from individual players.

In our third room we simply wait for the second player to join. So we put some object there and in
the step event we puit:

if (nplay_player_find() > 1)
room got o_next ();
}

(We actually don't need to go to this room for the dave.)

Synchronizing actions

Now that we set up the connection, created a session, and have two playersin it, the real game can
begin. But this also means that the real thinking about communication must begin. The main
problem in any multiplayer game is synchronization. How do we make sure that both players see
exactly the same picture of the game world? Thisis crucial. When one player sees the ball in our
game at a different place than the other player, strange things can happen. (In the worst case, for
one player the ball is hit with the bat while for the other player the ball is missed.) The games easily
get out of sync, which creates havoc in most games.

What is worse, we have to do this with alimited amount of communication. If you are e.g. playing
over a modem, connections can be slow. So you want to limit the amount of communication as

much as possible. Also there might be delays in when the data arrives on the other side. Finaly,
there is even the possibility that data gets lost and never arrives on the other end.

How to best handle al these problems depends on the type of game you are creating. In turn-based
games you will probably use arather different mechanism than in high-speed action games.

Game Maker offers two mechanisms for communication: shared data and messages. Shared data is
the easiest mechanism to use. Sending messages is more versatile but requires that you understand
better how communication works.

Shared data communication

Shared data communication is probably the easiest way to synchronize the game. All
communication is shielded from you. There is a set of 1000000 va ues that are common to all
entities of the game (so e.g. both to the master and to the slave). Each entity can set values and read
values. Game Maker makes sure that each entity sees the same values. A vaue can either be ared
or astring. There are just two routines:

npl ay_dat a_wri t e(i nd, val)write value val (string or real) into location i nd (i nd
between 0 and 1000000).

npl ay_dat a_r ead(i nd) returns the value in location i nd (i nd between 0 and 1000000).
Initially all values are 0.

To use this mechanism you have to determine which value is used for what, and who is allowed to
change it. Preferably, only one instance of the game should write the value. Also preferably only
use the first few locations to save memory.

In our case there are 4 important values. the y-position of the masters bat, the yposition of the
dlaves bat, and the x and y position of the ball. So we use location 1 to indicate the y-coordinate of
the masters bat, location 2 to indicate the y-coordinate of the slave bat, etc. It is clear that the master
writes the values of his bat and the slave writes the values of the slaves bat. We decide that the
master is responsible for the values of the ball. The dave simply draws the ball in the correct
position in each step.

How do we put this into work? First of al, the master bat (being the left one) should be controlled
by the master only. This means that in the up and down arrow keyboard events that control it we
should make sure that the position only changes if we are the master. So the code for the up arrow
key could be something like:

if (!global.mster) exit;
if (y > 104) y -= 6;
nmplay_data_wite(1,y);

}

For the dlave bat we write a similar piece of code. Now both the master and the slave must make
sure that they place the bat of the other at the correct position. We do this in the step even. If we are
the dlave, in the step event of the master bat we must set the position. So here we use the following
code:

{
if (global.master) exit;
y = nplay_data_read(1);
}

Similar for the slawe bat.

Finaly, for the ball we first of al must make sure that it bounces around when it hits the walls and
the bats. Actually, only for the master this must be done. To communicate the position of the ball to
the dlave, add the following code in the step event:

if (global.mster)
{
npl ay_data_write(3,x);
nplay_data_wite(4,y);
}

el se

{

X

y
}

mpl ay_dat a_read(3);
nmpl ay_dat a_read(4);

}

With this the basic communication is done. What remains is the handling of the start of the game,
the scoring of points, etc. Again, all thisis best left purely under control of the master. So the
master decides when a player looses, changes the score (for which we can use an extra location to
communicate it to the dave), and lets anew ball start. Y ou can check out the enclosed game
pongl. gnt for details.

Note that with the communication scheme described, the two games can still be a bit out of sync.
Thisis normally not a problem. Y ou can avoid this by having some synchronization object that uses
some values to make sure that both sides of the game are ready before anything is drawn on the
screen This should be used with care though because it might cause problems, like deadlock in
which both sides wait for the other.

Realize that when a player joins a game later the changed shared values are NOT sent to the new
player (this would take too much time). So only new changes after that moment are sent to the new

player.

Messaging

The second communication mechanism that Game Maker supportsis the sending and receiving of
messages. A player can send messages to one or all other players. Players can see whether messages
have arrived and take action accordingly. Messages can be sent in a guaranteed mode in which you
are sure they arrive (but this can be slow) or in a non-guaranteed mode, which is faster.

We will first use messages to add some sound effects to our game. We need a sound when the ball
hits a bat, when the ball hits awall, and when a player wins a point. Only the master can detect such
events. So the master must decide that a sound must be played. It is easy to do thisfor its own

game. It can simply play the sound. But it must also tell the slave to play the sound. We could use
shared data for this but that is rather complicated. Using a message is easier. The master smply
sends a message to the dave to play a sound. The dave listens to the messages and plays the correct
sound when asked to do so.

The following messaging routines exist:

npl ay_message_send(pl ayer, i d, val) sends a message to the indicated player (either an
identifier or a name; use 0 to send the message to al players). i d isan integer message
identifier and val isthe value (either areal or astring). The message is sent in non-
guaranteed mode.

npl ay_message_send_guar ant eed(pl ayer, i d, val) sends a message to the indicated
player (either an identifier or a name; use 0 to send the message to al players). i d isan

integer message identifier and val is the value (either area or a string). This is a guaranteed
send.

npl ay_message_r ecei ve(pl ayer) receives the next message from the message queue that
came from the indicated player (either an identifier or a name). Use O for messages from any
player. The routine returns whether there was indeed a new message. If so you can use the
following routines to get its contents:

npl ay_nessage_i d() Returnsthe identifier of the last received message.

npl ay_message_val ue() Returnsthe vaue of the last received message.

npl ay_nessage_pl ayer () Returns the player that sent the last received message.

npl ay_message_nane() Returnsthe name of the player that sent the last received message.
npl ay_nessage_count (pl ayer) Returns the number of messages left in the queue from the
player (use 0 to count all message).

A few remarks are in place here. First of al, if you want to send a message to a particular player
only, you will need to know the players unique id. As indicated earlier you can obtain this with the
functionnpl ay_pl ayer _i d() . This player identifier is aso used when receiving messages from a
particular player. Alternatively, you can give the name of the player as a string. If multiple plyers
have the same name, only the first will get the message.

Secondly, you might wonder why each message has an integer identifier. The reason is that this
helps your application to send different types of messages. The receiver can check the type of
message using the id and take appropriate actions. (Because messages are not guaranteed to arrive,
sending id and value in different messages could cause serious problems.)

For the playing of sounds we do the following approach When the master determined that the ball
hits the bat it executes the following piece of code:

if (!'global.mster) exit;
sound_pl ay(sound_bat) ; /'l play the sound yourself
npl ay_message_send(0, 100, sound_bat) ; /1l send it to the slave

The controller objectin the step event, does the following:

{
whi l e (nmpl ay_nessage_receive(0))

if (nplay_message_id() == 100) sound_pl ay(npl ay_nessage_val ue());
}

That is, it checks whether there is a message and if so checks to see what theid is. If thisis 100 it
plays the sound that is indicated in the message value.

More general, you game typically has a controller object in your rooms that, in the step event, does
something like:

{

var from nane, nessid, val
whi |l e (npl ay_nessage_recei ve(0))

from = npl ay_nessage_pl ayer()
name = npl ay_nessage_nane();
messid = npl ay_nessage_i d();
val = npl ay_nessage_val ue();
if (messid == 1)

{

/1 do sonet hing
else if (messid == 2)
/1l do sonething el se

/'l etc.

}
}

Carefully designing the communication protocol used (that is, indicating which messages are sent
by who at what moments, and how the others must react to them) is extremely important.
Experience and looking at examples by others helps alot.

Dead-reckoning

The pong game described above has a serious problem. When there is a hick-up in communication
the ball of the slave will temporarily stand still. No new coordinate positions arrive and, hence, it
does not move. This problem occurs in particular when the distance between the computers is large
and/or the communication is slow. When games get more complex, you will need more values to
describe the state of the game. When you change a lot of values in each step, alot of information
must be transmitted. This can cost a lot of time, Slowing your game down or making things go out
of sync.

A first way to make the communication of shared data a bit faster is to no longer demand
guaranteed communication of the data. This can be achieved by using the function:

npl ay_dat a_node(guar) Setswhether or not to use guaranteed transmission for shared
data. guar should either be true (the default) or false.

A better technique used to remedy this problem is called dead-reckoning. Here we send information
only from time to time. In between the game itself guesses what is happening based on the
information it has.

We will now use thisfor our pong game. Rather than sending the ball position in each step we also
send information about the balls speed and direction. Now the slave can do most of the calculations
itself. Aslong as no new information arrives from the master, it smply computes where the ball
moves.

We will not use shared data in this case. Instead we use messages. We use messages that indicate a
change in ball position, ball speed, bat position, etc. The master sends such messages whenever
something changes. The controller object in the slave listens to these messages and sets the right
parameters. But if the dave receives nothing it till lets the ball move. If it makes a dight mistake, a
later message from the master will correct the position. So for example, in the step event of the ball
we put the following code:

{
if (!global.mster) exit;
npl ay_message_send(0, 11, x) ;
npl ay_message_send(0, 12, y) ;
npl ay_nessage_send(0, 13, speed) ;
npl ay_nessage_send(0, 14, di recti on);

}

In the step event of the controller object we have the following code:

{

var nessid, val
whi l e (nmpl ay_nessage_recei ve(0))

nmessid = npl ay_nessage_i d();
val = npl ay_nessage_val ue();
/'l Check for bat changes
if (messid == 1) bat_left.y = val
if (messid == 2) bat_right.y = val;
/1 Check for ball changes
if (messid == 11) object_ball.x val
if (messid == 12) object_ball.y val
if (messid == 13) object_ball.speed = val
if (messid == 14) object_ball.direction = val
/1 Check for sounds
if (messid == 100) sound_pl ay(val)
}
}

Note that the messages don't need to be sent in a guaranteed mode. If we miss one from time to time
this is not a serious problem. Y ou can find the adapted game in the filepong2. gné6.

Now you will be disappointed when you run game pong2. There are till hiccups. What causes
these? The reason is that transmission might be slow. This means that the slave might receive
messages that were sent awhile back. Asaresult it will set the ball position back a bit and then,
when it receives the new messages, sets it forward again. So let us do athird try, which you can find
in the file pong3. gm6. This case we only exchange information when the ball hits a bat. So the
whole rest of the motion is done using dead-reckoning. The master is responsible for what happens
at the side of the master's bat and the slave is responsible for what happens at the other side. While
the ball moves from one side to the other no messages are exchanged anymore.

As you will see the ball moves smoothly now. Only when it hits a bat a short hick-up can occur or
the ball might start moving before it reaches the opponents bat. The reason is that this mechanism
assumes that both games run at exactly the same speed. If one of the computers is ow this might
cause a problem. But a hick-up at a bat is much more acceptable than a hick- up during the motion.
To avoid thislast type of problem you need more advanced mechanisms. For example, you can
send timing information such that each side knows how fast the game is running on the other
computer and can make corrections accordingly.

Hopefully, by now you understand how difficult synchronization is. Y ou might also start
appreciating how commercial games achieve this. They have to deal with exactly the same
problems.

A chat program

For our second demo we make a little chat program. Here we will alow an arbitrary number of

players. Also we will allow for multiple sessions and give the player the choice to pick a particular
session. We will use messages with strings to send the text typed around.

We use a dightly more complicated mechanism to make the connection. The first room now has
four choices for the four different types of connections. But is does not make the connections.
Instead it only fillsin a globa variable connecttype. In the second room the player can again choose
whether to create a game (or actually a chatbox) or join one. Only now is the connection initialized.
Depending on whether the player creates or joins a game some questions are asked.

After the connection is made successfully, the session is created or joined. This time the player is
asked for his’her name such that players can be identified. The join part is a bit more complicated
this time. We construct a menu of al different session available from which the player can choose
one.

Normally, when the game that created the session ends, the session ends. For a chat program thisis
probably not what you want. The other players should be able to continue chatting. This can be
changed using the function:

npl ay_sessi on_node(nmove) Setswhether or not to move the session host to another
computer when the host ends nove should either be true or false (the default).

The whole mechanism of the first two rooms you will probably want to reuse for your games
becauseit is often largely the same.

After this we move to the chatbox room. Thereis just one controller object that does al the work
here. | will not explain the details of letting the user type in the lines of text and displaying the last
couple of lines. It isall put in some scripts that you can reuse if you want. It is al rather
straightforward (when you know how to program in GML). The only part that is still interesting is
that whenever the player presses the enter key, the typed line is send to al other players, with the
players name in front of it. Also when a player joins or quits, he sends a message to al other players
indicating what he did.

Look at thefilechat . gnb for details.

Conclusion

The multiplayer facilities in Game Maker make it possible to create fancy multiplayer games. The
functions though only help you with the low- level communication Y ou yourself have to design the
communication mechanism used. Thisis a careful process. It should be designed while you design
the game. It is very difficult to add effective multiplayer later. Here are some global guidelines:

For most smple game a mager-dave mechanism is easiest to make

Carefully determine who is responsible for what data

Use dead-reckoning whenever possible

Try to rely as little as possible on guaranteed communication

