Action Library Builder
by Mark Overmars

20-4-2003
Introduction

The collections of actions that you find in the object properties form and that can be used in events are stored in libraries. There are a number of default libraries but you can also create your own libraries. When a library is placed in the lib folder in the Game Maker folder, these are included and the actions can be used in your games. The Action Library Builder is a small program that helps you create such libraries. I wrote it mainly for myself, so don’t expect an easy to use program. Also it is probably not fool-proof. Only use this if you are a very experienced Game Maker user that knows everything about code.

You can distribute libraries created with this program for others to use but only if you follow the following rules. First of all, in the files and in some accompanying help document you must clearly indicate your name and email address and the intended use of the library. Also make clear that this is not a standard library and that you as a creator takes all responsibility for its use. Secondly, only use library id’s above 1000. The library id’s below that are for official use only. In the documentation, make clear that if people use your action library they can no longer distribute the editable versions of their games because others might not have these libraries. (They can distribute the executables because they don’t need the library files.) Finally, keep your libraries backwards compatible, that is, don’t change the arguments, or ids of the library or actions because it will lead to problems with games using older versions.
WARNING: Only use this program if you are an experienced Game Maker user and you understand what was written in the paragraphs above. Never change the default libraries that come with Game Maker.
The global idea

In Game Maker, when setting the properties of an object there are a number of tabbed pages from which you can drag actions to the different events. Each such tabbed page corresponds to an action library. These libraries are stored in the folder lib in the main folder of Game Maker. Each library contains some global information about the library plus information for a number of actions. The global information contains the label placed on the tab, a unique id, and some author information. Each action has a corresponding image, some description strings, information about the type of interface in which the user can specify the parameters, and information about what happens when the action must be executed. The following sections describe this information in detail.
The main interface
When you start the Action Library Builder and load a library, the following form is shown:
[image: image1.jpg]Fle Edt Help

De

¥hode

Tab capton General
[main Name: [reate_Dbict Descipton: [Crete anrtance of an biect
Lh‘i”“‘“ Actond: [207 List st [Ereate an etance of cbct @0
O Image: | o) Change Hint Test: [@wereate instance of object @0 at @rposiion (@1,82)
|} Initislization Code. Kind: | Nomal - I~ Hidden I~ Advanced
At LR Interface
Goets Kind: [Nomal ~| Agument Count [3
Change. Obiect I~ Gueston [obiect " [Dbiect =] [0
il Otect
i Potton ¥ Show"Apply T [Evpression =
Sel_Spiie IV Show "Relative’
Eerd [Ewrsin <] o
Sound
End Sound
it Sound
Fooms
Prous Foom
e Foa
Cuncrt Foom
ngine_Foom
it Frevious. Aoom Pl
I_Next_Floom e
it Functon Name: [acfon_ceste_obiect
o Add % Up & Function
- o
X Detete | § Down

There is a lot of information on it that I will try to explain here. At the top there are the usual menu and the toolbar. Here you can load and save libraries and cut and copy action definitions.

At the left there is information about the library. At the right there is information about the selected action.

The library

First of all, the library has a Tab caption that is shown on the tab of the page of actions. Make it as brief as possible. Secondly, it has a Library Id. This id uniquely identifies the library. You cannot change this. The program does its best to make this unique but it might fail. (If you make a great library you can mail it to me and I will give it an official number (under 1000). But only do so if it is finished. I will only give a library an official number of it is of great quality.)

Each library can contain some Information. If you click this button the following form will show:

[image: image2.jpg]rary Information
Author. [tk Overmars

Version: [100

Lastchanged: [12/7/2002 5 21 54 Fif

Infarmation

Object

The standard second lbrar.

7 oK

Here you can type your name as an author, the version number, and some further information. The last changed date is filled in automatically. Press OK to save the information. (This information is not used by Game Maker. It is just for you.)
There is also a button labeled Initialization Code. Here you can provide a piece of GML code that will be executed once when the game starts (before anything else). Here you can e.g. set certain global variables or load DLL’s. Note that the program contains only a simple code editor with no color coding, checking, etc. So better make sure that your code is correct (use copy and paste from Game Maker.) Errors in initialization code will lead to unexpected crashes when running the game.
Note that the initialization code is always executed! Also when no actions from the library are used in the game! So you have to write this code very carefully (and preferably not use it at all). For example, if you need a DLL you better check whether the file exists and not do anything otherwise.
If you check the box labeled Advanced this library will only be shown when Game Maker runs in advanced mode.
Finally there is the list of actions in the library. There are buttons to Add an action, to Delete the current action, and to move actions Up and Down in the list. The actions will be shown in Game Maker in the order indicated here.

You can also use the menu to Cut, Copy, or Paste actions. (This is done using a file such that you can cut and copy between different versions of the program running.) Finally you can Merge all actions from another library into the current library. Note that this will only copy the actions. Not the initialization code. Also it will not keep the action id’s unique (see below)! So use this feature with care.

The action

Once you added or selected an action, at the right information about the action is shown. This is subdivided in three parts: General information, interface information, and execution information.

General action information

The general information contains the Name of the action. This name is only used for reference within the library builder and has no function outside it, except for labels (see below). Also each action must have a unique Action Id. This id is used by Game Maker to reference the action so it better be unique within the library. Use numbers between 1 and 999. (The program will refuse to save files when the id’s are not unique.) Next there is the Image that represents the action. This must be a 32x32 image but the actual image should only be 24x24. (This sounds a bit stupid but this is due to the fact that normally 32x32 icons are used for this.) The bottom left pixel color of the 32x32 image specifies the transparency color. The three basic images for normal actions, drawing actions, and questions are included. You might want to use these as basis to give the actions a consistent look.
Next there is the Description, the List Text and the Hint Text. The description is shown when the user rests the mouse above the action in the panel. The list text is shown in the action list. The hint text is shown in a hint when the user rests its name on the action in the list. The list text and hint text can contain certain field of the actual action. For this you use the following symbols:

#
A newline character

@FB
Set the complete text in bold (only for the list text)

@FI
Set the complete text in italic

@r
Is replaced by the word ‘relative ‘ when relative is checked

@N
Is replaced by the word ‘not ‘ when not is selected (only for questions)

@w
Is replaced by ‘for the other object: ‘ or ‘for object XXX: ‘ when not self

@0, @1, etc. is replaced by the argument value (how depends on the type of argument)

What is very important is the Kind of the action. There are the following possibilities:

Normal

A normal action (see below)
Begin Group

The beginning of a group
End Group

The end of a group
Else

The else action
Exit

The exit action
Repeat

The repeat action
Variable

The action to set a variable
Code

The action to execute a piece of code
- Placeholder

A placeholder (will be replaced by nothing to create empty spots)
- Separator

Will not show in Game Maker; can be used for separating groups
- Label

Prints the name of the action as a label
You normally only use the Normal action. Also you might want to use the last three to make the panel more organized.
If you check the box labeled Advanced this action will only be shown when Game Maker runs in advanced mode.
Finally, there is a checkbox labeled Hidden. When checked the action will not be shown in the panels, but Game Maker will know about it. This is useful if you later want to remove certain actions but want to keep your libraries backwards compatible. Users that have the action in their games can still use it or change it but they can no longer add new ones.
Interface information

For normal actions you must next indicate what the interface will look like that is shown when the user adds the action or changes its properties. First you must select the interface Kind. The following possibilities exist:
Normal

The normal interface that most actions have.
None

No interface is shown
Arrows

The interface with the nine blue arrows and a speed
Code Editor

The code editor
Text Editor

A text editor (same as the code editor but without color coding)
There are three special settings for the interface. Question indicates that this action is a question and the next action is only executed when the answer is positive. Show Apply To indicates that the user can choose whether this action must be applied to certain objects. Relative indicates whether the relative box must be shown in the interface form (only for normal and arrows).
The argument information indicates what arguments the user must provide. For the normal interface you must indicate the Argument Count, that is, the number of arguments that must be shown. An action can have between 0 and 6 arguments. For each shown argument you must give the caption. Also you indicate what type the argument is: real, string, both (meaning an expression when it starts with a quote and a string otherwise), Boolean, color (the color selector is shown when the user wants to change the value), font, some kind of resource, or a menu. In the last case you must provide the menu items. Finally you indicate the default value for the arguments.

For other kinds of interfaces you cannot indicate the arguments yourself. Here is what they look like. For the arrows interface the nine arrows are represented by a string of length 9. Each character is either a 0 or a 1 depending on whether motion in the direction is allowed (according to the numeric keypad). For example, the horizontal and vertical directions are indicated by ‘010101010’. The second argument is the speed. For the code and text editor the first argument is the string containing the code or text.

Execution information

In this part you indicate how the action must be executed. There are three possibilities. First of all you can indicate that there should be no execution at all. Not very useful but for example the comment action uses this.

Secondly you can indicate an existing function that must be executed. This will be very fast because no code interpretation is required. All default actions use this approach. The arguments specified must exactly match the function arguments. Some action functions correctly handle the setting of relative. The others simply ignore it. In general you better not let the user use relative in this case unless you know exactly what you are doing.

Finally you can indicate a piece of GML code. This makes it possible to create all sorts of interesting actions, for example calling DLL functions. The arguments provided are passes as argument0, argument1, argument2, etc., like for scripts. When the action uses Relative the code can check whether the user selected the relative box by looking at the variable argument_relative. This is true when relative was checked. If the action is a question the GML code should return whether the answer is true (1) or false(0).

For example, the following piece of code can be used for the action to jump to a new position:
{

 if (argument_relative)

 {x += argument0; y += argument1;}

 else

 {x = argument0; y = argument1;}

}

The following example would be a question to see whether the number of lives becomes smaller than or equal to a given value.

{

 if (lives <= argument0)

 return true

 else

 return false

}

Finally

Please remember that this tool is simply provided as is and is only meant for advanced users. Don’t send me suggestions for improvement. I will not spend much time on it. Please test your work extremely carefully. Game Maker does very little checking for errors in library files. For example, when there is an error in the execution script the game will simply stop without a warning.
